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1, The Operational Approach

There are essentially two possible approaches to physical
geodesy (as also to other natural sciences): they might be called
the model approach and the operational approach. Essentially, the
first approach starts from a theory, the second from the observa-
tions. Obviously, the two approaches are closely related to the

deductive method and the inductive method in the natural sciences.

In the model approach, one starts from a mathematical mo-
del or from a theory and then tries to fit this model to reality,

for instance by determining the parameters of this model from ob-
servations, The classical geodetic example are the centuries-old
attempts to determine the parameters of an earth ellipsoid by
observation, from the old grade measurements to modern satellite
observations.

Perhaps the most elaborate form of this model approach is
the boundary-value problem of physical geodesy in the formulation
of Molodensky. It has a mathematically enormously interesting and
deep theory and is practically highly significant, as the many
gravimetric geoid determinations and computations of deflections
of the vertical show. However, this approach has its weeknesses:
the required continuous gravity coverage is practically not
realizable; on the other hand, many other important data cannot
be incorporated into this theory. The model selects its data.

At present we have a great number of geodetic measurements
of very different types, from terrestrial angle and distance
measurements to satellite data of various kinds. The question
arises: how can we use and combine all these data in the best
possible way. This is the operational approach.

Let us summarize. In the model approach one asks: how can
I best determine my model by suitable observations? In the opera-
tional approach one asks: how can I make best use of all my ob-
servations?

As a matter of fact, the two approaches do not compete
with each other; each one incorporates important aspects, and the
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two approaches mutually compiement each other.

The operational approach to physical geodesy has come up
at a relatively recent date, when a huge number of measurements
of new types was available and when it turned out that the clas-
sical, especially the gravimetric approach failed to give a com-
plete answer in view of the lack in gravity data. }

In geometrical geodesy already least-squares adjustment
is in the spirit of an operational approach (how can I best use
all my measurements). In physical geodesy, operational methods
have been known under the names "“least-squares collocation”,
"integrated geodesy", "operational geodesy". A1l these methods
are very similar; they all aim at an adequate treatment of the 1
gravity field, in addition to an adjustment of measuring errors.
They all use quadratic minimum principles incorporating not only ]
the measuring errors, but also the anomalous gravity field.

The purpose of the present report is a systematic treat-
ment of the operational approach. Obviously, the determination
of the gravity field, of station coordinates, etc., from discrete
measurements does not in general admit a unique solution; it is
an "improperly posed problem". The question is: Which practically A
feasible possibilities exist? Is there a genuine alternative to
least-squares collocation and related methods, which is, perhaps,
even simpler?

This question is treated by using modern techniques for
solving improperly posed problems. They all seem to converge on
collocation by means of kernel functions and least-squares collo-
cation; but we shall also try to point out alternatives.

2. Measurements as Nonlinear Functionals

Every geodetic measurement depends:
1. on one or several points in space;
2. on the earth's gravitational field.
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Symbolically we may write:
1w FEX ). (2-1)

Here 1 denotes the measurement under consideration, V denotes
the gravitational potential, and the vector X comprises the
coordinates of the points to which the measurement refers, and
possibly other parameters. For instance, if we have two points

P and Q and if we use rectangular coordinates xyz referred
to some Cartesian reference system, then

- T -
X = [xp. Yps Zps Xgs Yoo ZQ} : (2-2)

T denoting the transpose (in the sequel, vectors will be column
vectors unless the contrary is stated).

The symbol F denotes any functional dependence on X
and V. With respect to X, it is an ordinary function; but it
is not necessarily an ordinary function of V but may involve
first and higher derivatives of V, integrals, etc. In the ter-
minology of functional analysis, F 1is a (nonlinear) functional
of X and V.

Denote the number of components of x by m; then X
may be said to belong to m -dimensional Euclidean space Rm. The
function V may be considered to belong to some set, or space,
H of harmonic functions. Then, in the jargon of modern mathema-
tics, the functional F is a mapping of the product space
Rm x H into R, the real number line:

F: R_x H=+R, (2-3)

which, in the language of plain mortals, means simply that F
associates, to each harmonic function from the set H and to
each vector RIn , a real number which represents the numerical
value of the observation 1.
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More intuitively we may say that F is nothing else but
a prescription for'computing a number 1 from a given vector X
and a given function V: if X and V are supposed to be known,
then it must be possible to find, in an unambiguous way, the va-
lue of 1. In other terms, F denotes an operation to be per-
formed on X and V, the result of which is a real number.

Thus, functionals are special cases of operators: for an
operator, the result of the operation may be quite general: a
vector or another function; if the result is a real number, the
operator is called a functional. Best known from functional ana-
lysis (cf. Kantorovich and Akilov, 1964; Meissl, 1975; Tscherning,
1978) are linear operators and linear functionals. Nonlinear
operations are basic in the so-called "Modern Analysis" (Dieu-
donné, 1960; Loomis and Sternberg, 1968).

Our functionals (2-1) will, in general, be nonlinear; in
the next section, we shall describe how they can be linearized.

The physical meaning of such functionals F will be clear
from the examples given below.

Instead of the gravitational potential V, we may also use
the gravity potential W, defined in the usual way by

W=V o+ gu?(x®+y?), (2-4)

w denoting the angular velocity of the earth's rotation and the
z -axis coinciding with the earth's axis of rotation. For the
present purpose it is appropriate to regard w as constant and
the rotation axis as invariable with respect to the earth's body:
the very small deviations from this idealized situation can easi-
ly be taken into account by corrections, without changing the
essential picture.

Throughout this report, the system xyz will thus be de-
fined as follows: the origin is at the earth's center of mass,
the 2z -axis coincides with the (mean) rotation axis, and the x-
axis goes through the (mean) Greenwich meridian.
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Then, instead of (2-1), we have

1 = F(X,W). (2-5)

As W is expressed in terms of V and X by (2-4), the rela-
tions (2-1) and (2-5) are equivalent; as a matter of fact, the
letter F denotes different functionals in each of the two ca-
ses.

Let us now illustrate these abstract considerations by
means of concrete examples.

Astronomical and gravimetric observations. The gravity
vector G is expressed in terms of gravity g and astronomical
latitude ¢ and longitude A by means of the well-known rela-
tion

gcosecosA
-G = |gcosesina (2-6)
gsine

(cf. Heiskanen and Moritz, 1967, p.57). On the other hand, G
is the gradient of the gravity potential W : , b

W
X
G = grad W = Ny ’ (2-7)
w )
z
Nx denoting the partial derivative
3 Y 5 |
Nx = (2-8)

and similarly for Ny and W,. Comparing (2-6) and (2-7) and
solving for ¢, A, and g we obtain

o = tan~! 7=%£§=? ‘ (2-9)
Wx+ Ny
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W
A = tan”! r (2-10)
X
> 2 2 F
g = /hx +U2 W2 (2-11)

These equations have the form (2-5): they express the observables
¢, A, g in terms of the potential W , not as ordinary functions
of W , but as nonlinear functionals involving the operation of
differentiation. Let X denote the coordinate vector of the ob-
servation station:

(2-12)

>
n
N <K Xx

Then, as Nx .Ny .Hz are functions of x, y, 2z, the expressions
(2-9) to (2-11) do, in fact, also depend on X , in agreement with
(2-5).

Angle and distance measurements. The observables: azimuth
A , zenith distance Z , and distance S between two points P
and Q , can be expressed in terms of the coordinate differences

AX = xQ - xP "
8Y = ¥ =Yg b (2-13)

AZ'ZQ'ZP 'Y

as follows (Heiskanen and Moritz, 1967, p.219):

A s Aund - AXSinA + AycosA : (2-14)
- AXSTN®COSA - AysindésinA + Azcosd i
7 = cos~!AXCOSOCOSA ¢+ AycosssinA + azsine (2-15)
Jax? + ay? + az?
s = /kxz + Ay2 + 42 . (2-16)




Again, these equations have the form (2-5); the vector X s
now

T
X = [xp, Y50 2o xQ, yQ, ZQ] . (2-17)

comprising the coordinates of both points P and Q, and the
dependence on the potential W 1is implicitly through ¢ and A
as expressed by (2-9) and (2-10); hence A and Z are, in fact,
nonlinear functionals of W. Note that these observables depend
on the target point Q only because its coordinates enter into
Ax, Ay, Az; on the observation station P they depend in the
same way, but there is an additional dependence on P because
¢ and A, and hence W_, wy, W,, refer to-this point.

A measured horizontal angle w may be considered as the
difference between two azimuths:

measured at an observation station P to two targets Q and Q,.
Both azimuths A1 and A2 may be expressed by (2-14); the resul-
ting expression for w clearly involves the coordinates of P,
Q1’ and Q,, so that, in the present case, the vector X consists
of 9 components, which are the coordinates of these three points;
we again‘get a nonlinear func.ional of form (2-5).

It goes without saying that the functional expression
(2-16) for the distance (2-16) is also a special case of (2-5),
in which there simply is no factual dependence on W: measured
straight distances between two fixed points do not depend on the
gravity field. ;

Satellite observations. Consider a distance S measured

from a ground station P to a satellite Q by laser or radar.
(Cf. Fig. 2-1; for a non-technical and compact review of various
techniques see (Cordova, 1977).)
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Figure 2-1, Satellite techniques
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Such a distance can again be represented by (2-16) but, if we
operate in the orbital mode, the coordinates of Q can be fur-
ther expressed by the six orbital elements Pys Pos «oes Pg of
some reference orbit and the coefficients Jnm and Knm of the
expansion of the earth's gravitational potential V in terms of
spherical harmonics. Thus S will have the form of some function

S = S(Xps¥paZpsPyaPyseeeaPgid, oK ) . (2-19)

This is a functional of form (2-1). The vector X is given now
by :

- ) 2! A
X = [xp,yp,zp,pl,pz,...,pe] 4 (2-20)

it comprises station coordinates and orbital parameters. The sphe-
rical-harmonic coefficients Jnm and Knm may be expressed in
terms of V by well-known integral formulas (of type of eq.(1-76)
of (Heiskanen and Moritz, 1967, p.31)), which explains the func-
tional dependence on V.

The change of distance S with respect to time t, that
is, the range-rate d3/dt, can be measured by doppler observations.
By integrating dS/dt with respect to t from t1 to t2, one
obtains distance differences S2 - 51‘ By photographing the sa-
tellite against the background of stars one finds the right as-
cension and the declination of the spatial direction PQ, or in
other terms, the unit vector e of this direction (Fig. 2-1). All
these observables have the same mathematical structure as (2-19): i
they are again functionals of type (2-1), the vector X being 2 %
given by (2-20). : ?

Satellite altimetry can be considered to measure the height
h of a satellite above the geoid: the ocean surface reflects a
radar signal emitted by the satellite, and under idealized condi-
tions, this surface coincides with the geoid. We claim that h
can again be expressed as a functional of type (2-1), with

e ——
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X = [PyePyeesebg]- (2-21)

This is true if it is possible, given X and the potential func-
tion V(x,y,z), to compute h. In fact, assume the gravitational
potential V(x,y,z) to be known as a function of position at all
points outside and on the earth's surface. Then the gravity po-
tential function W 1is also known by (2-4), and consequently the
geoid is an equipotential surface

W(x,y,2) = wo = const. (2-22)

Now, the satellite orbit can be computed from the parameters Py
of the reference orbit and the gravitational potential V, and
the position Q of the satellite along the orbit is uniquely de-
termined by giving the corresponding instant t (which we assume
to be known). Thus both the geoid and the satellite position Q
are determined, and so is h, as the length of the perpendicular
from Q to the geoid. Therefore, by the definition of the func-
tional (2-1) given above, the satellite altimeter measurement h
is, in fact, such a functional. :

The data of satellite-to-satellite trickigg are time chan-
ges of the distance s between two satellites (Fig. 2-1). Such
a range rate ds/dt 1s again measured by means of the doppler
principle. At present one generally uses one high and one low sa-
tellite, but the use of two low satellites which are close to
each other is also possible. Considerations analogous to the pre-
ceding ones make it obvious that ds/dt has again the form (2-1),
the vector X comprising now the 6+6 elements of the two re-
ference orbits.

Satellite gradiometry is designed to measure elements (or
1inear combinations of elements) of the second-order gradient
tensor

—
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vxx ny sz
ny Vyy Vyz ~ (2-23)
X2z yz vzz

which is a symmetric matrix formed by the second derivatives of
the potential V with respect to the coordinates xyz. Any se-
cond-order gradient, say V , depends on position:

Xz

v = sz(x,y,z) . (2-24)

Xz

It has, therefore, the form (2-1), with

1
X = ly| s i (2-25)

z

the prescription for computing the functional F in the present
case consists in differentiating V with respect to x and z
and taking V__ at the point with coordinates (2-25).

Very-long-baseline interferometry measures the delay =,
with which a radio signal emitted from an extragalactic radio
source is received at two different placesﬁlP and Q (Macdoran,
1973).'By multiplying t with the light velocity ¢ we get the
projection

D = PQ.e (2-26)

-
of the vector PQ connecting the two points onto the direction
(supposed known) to the radio source represented by the unit vec-
tor e. Similarly to a distance measurement (2-16), D does not
depend on the gravity field, and we have a special case of (2-1)
with X being given by (2-17) and with no explicit dependence

en ¥,

These examples should make it obvious that all geodetic
measurements, without exception, can be represented as functionals
(2-1) or (2-5). This simple and general fact will be basic for .the
considerations to follow.
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Figure 2-2. Very-long-baseline interferometry
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It is clear that we have taken into account only the geo-
metrical and gravitational structure of the problem. We have ab-
stracted from random and systematic errors, nongravitational
effects, etc. Random errors will be considered later in this re-
port, and systematic effects are assumed to have been removed by
appropriate corrections. If necessary, systematic parameters can
be included in the vector X in (2-1) or (2-5).

3. Linearization

Every observation 1 gives an equation of type (2-1) or
(2-5). We thus obtain a system of functional equations

1o F LN
1, o« E 46 ,

2 ‘ 2 (X5 W) (3-1)
, 1= F (0,

which are to be solved for the unknown parahetérs X and the po- :
tential function W. . t
Since the functionals F1. Fz' o Fq are non-linear,
the system (3-1) is very difficult to handle directly. The usual
procedure with difficult nonlinear problems is to linearize them R
by Taylor's theorem.
Let us introduce an approximate value Xo for the vector
X and an approximation U to the gravity potential W. The func-
tion U 1is called the normal potential; it is generally taken to
be the external gravity potential of an equipotential ellipsoid

- (cf. Heiskanen and Moritz, 1967, sec. 2-7). i ‘

We put
X = X, + 86X, (3-2)
W=U=+T, (3-3)

W

Y LB ——

¥ e
¢ -‘Mﬁm Pkl e’ L iy ed v s mmw v




14

where the differences 6X = X - Xo and T = W - U are considered

to be smally T 1is called the anomalous potential (ibid., sec.2-
13}. :

Thus (2-5) becomes

1 = F(X°+5X. U+T) (3-4)
and a Taylor expansion gives

1= F(X,,U) + aTsX + LT (3-5)

plus higher order terms, which we neglect. Here a 1is the column
vector of ordinary partial derivatives '

kT %5;("0'”) (3-6)

of F with respect to the component Xk of the parameter vector
X, taken for the approximate values Xo and U; aT is the cor-
responding row vector, so that aTsX is a scalar product. The
term LT 1is less elementary: it expresses a linear operator L
acting on the function T. The meaning of this will be clear from
the examples to follow.

By means of the substitution

61 = F(X,H) = F(X_,0) , | (3-7)
the nonlinear system (3;1) thus becomes the linear system

611 = afcx + LIT ’

s aT
612 azsx + LzT '
. (3-8)

61 = a“sX + L T .
q q q

g

.
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The linearization process will be made clear by considering

some basic special cases.

Astronomical and gravimetric observations. The equations
to be linearized are (2-9), (2-10), and (2-11). Here we are con-
siderably helped by the fact that these expressions are just or-
dinary functions of wx, Ny, Nz; X is simply the coordinate
vector (2-12).

Therefore, we first linearize the gradient vector (2-7).
Using index notation, we write x = x

1,y=X2,,Z=x3 and

W W
_ x 1
grad W = Ny Y (3-9)
wz H3
Thus
_ oW ‘ § e i

The derivatives are taken at the original point with coordinates
X f [xk] (k = %,2,3) « e (3-11)
The approximation point is
» 0 - b -
Xo.2 180} i (3-12)
in obvious notation,
x. = x% + sx_ . (3-13)
k k k
Then (3-10) becomes
v - B (] (a_zw_] ix (3-14)
i Xy X, Jo axiaxj o 9

using the summation convention (summation over the repeated index
j). The notation (')o indicates that the respective quantity is




1 1

to be taken at the approximation point (3-12); Hi is, of course,
taken at the original point X.
We now introduce W = U + T and obtain

oW aU 3T 22U 321 .
— | — + | 4+ |—m—l X, + |l X X (3-15)
ax, [3x1]o [axi]o [axiaxj o J {axiaxj}o J

The last term is already of second order ( T and axj are first-
order quantities) and will be neglected. We further put

al ) '
s § (3-16)
laxi‘o ! s
§
{
aT )
— =T . (3-17)
[ xiJO i 4
2
U
P =M . (3-18)
[axiaxj]o i3
Thus (3-15) becomes finally
= . - 'J
W, =0, +T + M, 8%y (3-19)

completing the linearization of the gravity vector (3-9).

The straightforward way to linearize equations (2-9) to
(2-11) is to substitute (3-19) into these equations and to expand
the functions in the usual way by Taylor's theorem, considering
the fact that the second and third term on the right-hand side of
(3-19) are small. This is simple but laborious; more efficient is
an indirect procedure.

We combine (2-6) and (2-7) into the equation

H1 = -gCcosS$CcOosSA

!
i
H2 = -gcosesinn , (3-20) !
H3 = -gsine : ' ? «
here all quantities refer to the original point X,
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In an analogous way we write

U1 = -yCOS¢COSA
S -ycos¢sinx , (3-21)
U3 = -ysing .

Here all quantities refer to the approximation point: y is nor-
mal gravity, and ¢ and 2 are normal latitude and longitude.
Cf. (Heiskanen and Moritz, 1967, p.315), where these normal geo-
graphical coordinates have been denoted by ¢*¥ and »*.

We put

¢ = ¢ + 80 ,

A =X+ 80, (3-22)
9=Y+59.

substitute into (3-20) and expand by Taylor. The result is readi-
ly found to be

Nl U1 y6d
Wyl = U, +Q YCOSO8A| : (3-23)
W3 U3. L 69

where the matrix

singcosi sina -COS$COSA
Q = |singsina -COS\ -cos¢sina (3-24)
-C0S¢ 0 -sing |

is obtained by differentiation of (3-21).
On the other hand we have (3-19), which may be written in
the form

W,| = (U + gradT + Mé&X . (3-25)
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The matrix Q 1is easily seen to be orthogonal (why?); therefore
its inverse is simply the transpose:

Q-l - QT A (3‘26)
Therefore, the comparison of (3-23) and (3-25) gives

yé¢
ycos¢8A| = QTMsX + QTgrad T , (3-27)
69

which completes the linearization of astronomical latitude ¢
and longitude A. and of measured gravity g.
It is evident that (3-27) is, indeed, a linear function of
the components &x, 8y, 6z of the vector 6&X. As regards
QTgrad T, it gives for each difference 60, 6A, 69, a linear ex-
pression of the form

LAPRI P (3-28)

[-%4

o a—1:- + a
13X 29 39

<

The operation expressed by the functional L consists in forming
the partial derivatives and taking a linear combination of them.
Since differentiation is a linear operation, L. is indeed a lin-
ear functional.

Direction and distance measurements. The straightforward
4 approach is to differentiate equations (2-14), (2-15) and (2-16),
as outlined in (Heiskanen and Moritz, 1967, pp.220-221). The re-
sult will be differential formulas of form of eq. (5-83), ibid.
The actual work is, however, quite cumbersome though not diffi-
cult.

Again, an indirect approach might be preferable. We put

ssinZcosA u
ssinZsinA| = [v| =Y , (3-29)
scosZ W

a A s :
} » "hdv st B R TG R TSy S v —
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Then the vector Y so defined is related to the difference vector

>

>

1]
N 0% 0%
] 1 ]
R Sl e

by the linear transformation

Y = RaX

where R is the orthogonal matrix

-sindcosA -sindsinA cos¢
R = -sinA COSA 0
COSdCOSA cosdsina sin¢g

This is clear because wu,v,w can be interpreted as
coordinates in a local system in which the w -axis
tion of the gravity vector and the axes u and v
and east, respectively; the matrix R is formed by
in the xyz system, of the unit vectors e', e", n
to the uvw coordinate axes (Heiskanen and Moritz,
219).

(3-30)

(3-31)

(3-32)

rectangular
has the direc-
point north
the components
corresponding
1967, pp.218-

The differentiation of (3-29) gives, in analogy to (3-23)

obl
8Y = StosingsA
§s

where S is the orthogonal matrix
coszcosa -sina singcosa

S = |cosgsina cOSa singsina| .
-sing 0 coSZ

e

Va 'Q""\- h d
R T (8 e T S i

———

(3-33)

(3-34)
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Here we have designed by a,z,0 the "normal" equivalents of the
observables A,Z,s, so that

A =a + 6A ,
82 (3-39%)
§S .

v N
1} [}

Qa ¥«
+ +

The quantities a,z,0 can be computed from (2-14), (2-15), and
(2-16) by using approximate coordinates X and replacing ¢,A

by ¢,
By differentiation of (3-31), on the other nand, we find

8Y = R&AX + S6RAX . ' (3-36)

The combination of (3-33) and (3-36) gives, in view of the ortho-
gonality of the matrix S,

o8l
osingsAt = STReaX + STsRaX . (3-37)
s

The second term on the right-hand side is easily found in
an indirect way. The matrix R, by (3-32), depends on ¢ and 4;
therefore 6R will be a linear function of é¢ and 6A. The
term ST6RAX represents, therefore, the effect of &§¢ and ¢
on &6Z and 6A (there is, evidently, no effect on ¢&s because
s 1is independent of the gravity field); this is nothing else but
the well-known effect of the deflection of the vertical on azi-
muth A and zenith distance Z.

The effect on the zenith distance Z is

3Z = gcosa + nsSina (3-38)

(Heiskanen and Moritz, 1967, p.190, eq.(5-20)) and on the azimuth
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3A = gsinacotz + n(tan¢ - cosacotz) (3-39)

(ibid., p.186, eq.(5-13)). We have used the symbols 3Z and 3A
to indicate the partial influence, on Z and A, of the changes
§¢ and 6&A, which are related to the deflection components ¢
and n by

E = 60 n = 8ACOS¢ . (3-40)

The comparison of (3-24) and (3-32) shows that, for ¢ = 4
and A = 2,

R =-QT7 ; (3-41)
the geometrical interpretation of this fact is left to the reader.

In view of the relations (3-38) to (3-41), eq.(3-37) takes
the final form

062 B & 8X - §X, i '
osing8At = =S°Q éyQ - dyp + K[cos¢6A] (3-42)
§s J SZQ = GZPJ .
where
gcosa oSina
K = tosinacosgz =~ o(tan¢sing - cosacosz) 3 (3-43)
0 0

the matrices Q and S are given by (3-24) and (3-34).

These examples Will illustrate how the linearized equations
(3-8) can be obtained. Similar linearizations can be found in
(Eeg and Krarup, 1975) and (Grafarend, 1977).

Satellite observations. Satellite observations can be lin-
earized in the same way, as outlined in (Kaula, 1967,p.67) or

(Heiskanen and Moritz, 1967, pp.352 - 355). This is theoretically
‘e
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straightforward but computationally very laborious. For direction,
distance, and Doppler measurements, linearizations can be found

in many forms in the literature. Therefore, we need not go into
details here. We only mention, that the 1inear functional LT is,
for satellite observations, usually expressed in spherical har-
monics:

n
LT % Bl (a 6C +b

e mGSnm) ’ (3-44)

n
which is a linear combination of the spherical-harmonic coeffi-
cients &C and &S et T,
nm nm
For second-order gradients the linearization is straight-
forward: we have

| : : |

2 32y 33V 2

axaaz = |57 %% * X aanx e ai Ix R e
Ml $*%5l0 M e e

which is of form (3-5), VE being the normal (ellipsoidal) gra-
vitational potential. The vector 6x, can be further expressed
in terms of the orbital parameters; cf. eq.(9-35) of (Heiskanen
and Moritz, 1967, p.352), <

A linearization for satellite-to-satellite tracking can be

found in (Kryhski, 1978).

4, Determination of the Gravity Field
as an Improperly Posed Problem-

A problem is called properly posed if the solution satis-

fies the following three requirements:
" (1) existence,

(2) uniqueness,

(3) stability.
This means that a solution must exist for arbitrary (within a
certain range) data, that there must be only one solution, and
that this solution must depend continuously on the data. If one

‘l.
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or more of these requirements are violated, then we have an
improperly posed, or ill-posed, problem.

For a long time it was thought that only properly posed
problems are physically meaningful. In fact, deterministic pro-
cesses, as considered in classical mechanics, depend uniquely
and continuously on the initial data--this is the essence of
causality--and thus correspond to properly posed problems.

Only relatively recently is was recognized that there are
important problems that are not properly posed. There is now an

extensive Titerature on improperly posed problems; we mention
only two easily accessible books: (Lavrentiev, 1967) and, espe-
cially, (Tikhonov and Arsenin, 1977), and the review article
(Nashed, 1974). Geodetic applications are considered in (Schwarz,
1978); for instance, the downward continuation of gravity is an
ill1-posed problem. Also the work by Neyman (1977) should be men-
tioned. _

Our present task, the determination of the earth's gravi-
tational field from measurements, is a typfcal improperly posed
problem, The potential is so irregular that it cannot be comple-
tely described by any finite set of parameters; on the other hand,
we have only a finite number of measurements. Hence, there is no
unique solution, and Condition 2 is violated.

Using the standard notation of (Tikhonov and Arsenin, 1977),
we may write equations (3-8) in the form

Az = u , b | (4-1)
if we put ' : 3
6]1 '
§1
T (4-2) |
s |
and
6X '
i ; (4-3)
- |7 W

Py
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A is a linear operator, expressing the fact that equations (3-8)
permit the computation of the observations §1, if &X and T
are supposed to be given; the operations involved in these com-
putations are clearly linear. The operator A, therefore, com-
prises the vectors a: and the linear fuynctionals Ly -

In mathematical terms, &§X 1is a vector belonging to m-
dimensional Euclidean space Rm, and T can be considered a mem-
ber of a Hilbert space H of harmonic functions; u belongs to
Rq. Therefore, the 1inear operator A (4-1) defines a linear
mapping:

A: Rm X H ~» Rq. (4-4)
The solution, if it exists, may be written formally in the form

‘ 3 :

zZ=A"u, (4-5)

but it will certainly not be unique. Therefore, A"! is not an
inverse operator in the usual sense; it has the character of a
generalized inverse operator (analogous to generalized matrix in-
verses). : ,

For the solution of our problem we shall try to apply stan-
dard mathematical techniques for ill1-posed problems. Nashed (1974,
p.295) mentions the following possible approaches:

(a) a change of the concept of a solution;

(b) a change of the spaces and/or topologies;

(c) a change of the operator itself;

(d) the concept of regularization operators;

(e) probabilistic methods or well-posed stochastic exten-

sions of 111-posed problems.

These approaches may overlap in various ways.

We shall especially use the approaches (b), (d), and (e);
they will be considered in the following sections 5,6, and 7.
We finally point out that the vector X will only have

’
el s S i i




linearly independent components and that also all equations of
the system (3-8) are supposed to be linearly independent. In
other terms, we shall work with systems (4-1) that have full rank.

5. Pure Collocation

Let us suppose that the systematic parameters X (coordi-
nates, etc.) are known with sufficient accuracy. We then have
§X = 0, and the system (3-8) reduces to

LjT 1 Fomo Y@ nie allad (5-1)

for simplification, we have replaced slk by 1k. In order to
find a solution, we apply Approach (b) mentioned at the end of
the preceding section: a change of the solution space.

We shall try to approximate the desired function T by a
linear combination f of suitable linearly independent base

functions 9y Op9 <o ¢q:
T(P) & f(P) f-y§1bk¢k(P) 5 . (5-2) ,

P denoting the space point at which these functions are being
considered, and bk denoting suitable coefficients. Since T s |
harmonic outside the earth's surface, the base functions ) |
must also be harmonic functions. i

Since there are q independent functions Oy the space
of linear combinations (5-2) is q -dimensional, so that the so-
lution space, as well as the observation space, is q -dimension-
al, and the operator A, consisting of the q functionals Lk.
must, for this particular case, reduce to an q x q matrix, which
in general has a regular inverse; hence the'problem will, in
general, become well-posed. :

Note that this is made possible by changing the solution
space from infinitely-dimensional Hilbert space to the g -dimen-
sional space of linear combinations (5-2).
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For the special case of interpolation, details can be found
in (Moritz, 1978b, c).

We substitute (5-2) into (5-1) and get, because of lineari-
ty,

P v o (5-3)
N ) A

The quantities

babl ke s (5-4)

39% ™

being the values of linear functionals, are constants. Hence we
get the system of q 1linear equations

? A i (5-5)
LN jk k
which can be solved for the q coefficients b; provided the
determinant of the matrix Ajk is non-zero. The substitution of
the bk into (5-2) gives the desired solution.

The approximation of a function by fitting a linear com-
bination of base functions to a number of linear functionals is
collocation in the sense of approximation théory, cf.(Collatz,
1966, pp.29).

As a matter of fact, 1nterpolation is a special case of
collocation, when

LjT = T(Pj) ’ (5-6)
that is, when Lj associates to a function its value at a parti-

cular point Pj; this is the so-called evaluation functional. ‘2l

Kernel functions. Consider now a positive-definite symme-

tric function K(P,Q), harmonic as a function of both P and Q.

The positive definiteness of this function means that for any N,

the N x N matrix of elements K(P,.Pk). for any points Po» Pos

cing PN. is positive definite. Harmonicity means that Laplace's
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equation is satisfied both at the point P (with Q held fixed)
and at Q (for fixed P):

APK(POQ) -
AQK(P.Q) =

(5-7)
(5-8)

I
o O

the domain of harmonicity may be the exterior of a certain sphere
completely inside the earth.
Such a function K(P,Q) will be called a kernel function.
Assume now that base functions ¢k have the special form

¢, (P) = L2k(P,Q) , (5-9)

where LE means that the linear functional is applied to the
variable Q.
Then the matrix (5-4) takes the form

= LPLR : £
cjk ‘4 Lij(KoQ) ’ (5 10)

and (5-5) becomes
¥ e abuan Ny - (5-11)
. - G el ]

We solve this linear system and substitute the result into (5-2),
which by (5-9) has the form

F(P) = § bya,(P) = § bL%K(P,0) . (5-12)
i=1 i=1 .

The result may be written as

s & vo ©
> 21 22 2q 2 -

e
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using the abbreviation

oo

Q
cpj = LjK(P.Q) 3 (5-14)

This is the basic formula for analytical collocation with J
kernel functions.

Interpolation with kernel functions is the special case
(5-6), so that simply

1
04(P) = K(P,Py) = Cpy (5-15)
Cix = K(PyuPy) . (5-16) {

This interpolation method is known from mathematics (Meschkowski,
1962, p.114); collocation with kernel functions has been applied J
in geodesy first by Krarup (1968, 1969).

A remark on terminology: the approximating function is ob-
tained by fitting the given functionals exactly (measuring errors
are not taken into account); therefore ong.;peaks of "exact" or
"“pure" collocation. Sometimes it is also called "deterministic",
to distinguish it from stochastic methods (Dermanis, 1976, p.56; 1
Moritz, 1976, p.25), but the name “exact", or "pure", or "analy-
tical", collocation seems to be better because the concept “"deter- ‘
minism" already has a well-estabiished meanihg. namely causality B
in the sense of classical physics. s

Minimum norm property. The solution (5-13) has an impor- '
tant property: among all possible solutions (in some Hilbert spa-
ce of harmonic functiond of the system (5-1), the solution (5-13)
has the minimum norm:

Il £l = minimum , (5-17)
if the norm is defined by the inner product

Il £l 2 = (£,6) (5-18) |

»Y. - -"v 4 . ).
s S SR L i’ HOlrt i sl
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in the Hilbert space with the kernel function K(P,Q), so that
there holds the reproducing kernel property
(f(P),K(P,Q)) = f(Q) , (5-19)
where (+,+) denotes the inner product with respect to P (Mesch-

kowski, 1962, p.115; Krarup, 1969, p.39; Tscherning, 1975; Moritz,
1978b, p.36). :

6. Application of Tichonov Regularization

Since we shall use the letter A for a different purpose
later in this section, we shall denote the operator in (4-1) by
G and write : L

6z = u e (6-1)

Tichonov's regularization method consists in minimizing
the nonlinear functional : 4

2 ;
M*[z,u] = || 62 - u|| + on(Z) , (6-2)
, where a 1is a numerical parameter and q(z) 1is a so-called

stabilizing functional (Tichonov and Arsenin, 1977, pp.51,57),
which may be taken .as the square of some norm.

az) = |l zll” | (6-3)

(ibid., p.72), In this way, a unique solution can usually be ob-
tained.

Using (6-3) and very slightly generalizing (6-2) by the
introduction of a second numerical parameter g, we get the con- |
dition ;
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2 2
all z|]] + 8|| Gz - u|| = minimum (6-4)

Obviously, Gz - u is the error in satisfying (6-1), so
that |[| Gz - u|| will be the error norm. Therefore, (6-4) mini-
mizes a linear combination of the norm of the solution 2z and
of the error norm. Depending on the relation between o and 8,

a stronger weight is given to one or the other of these two norms.

The linear operator equation (6-1) is, in our case, nothing
else than the system (3-8). Let us simplify the notation by re-
placing

le by 1k - X by - X . . _ (6-5)

Then (3-8) becomes

T
11 a*X + L1T =
1 ax + L2T ’ &

. ] (6-6)

where X is a m -vector (an m x 1 matrix). We finally put

- PT1
1, a%
L 3
SR s e (6-7)
1. aT
[ 4] | q]
and L1
L
i Ty e (6-8)
L
[ 4

Here 1 1is a q -vector (a2 qx 1 matrix), A isa qxm ma-
trix, and B is a linear operator, formed of the q 1linear

functionals Lk i

——
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With these notation, (6-6) becomes
1 = AX + BT , (6-9)

which is (6-1) with

u =1 , (6-10)
X

z = [T} . (6-11)

& = [AB 3 (6-12)

we have used for linear operators the same mode of partitioning
as for matrices., In fact, (6-1) becomes on partitioning

(A B][#] =1, ' | (6-13)

which is (6-9).
What is Gz - u 1in our present case? We have

[A B][¥] S S INE T S . (6-14)

which'is the amount by thch the exact equation (6=1) or (6-9)
is not satisfied. Let us denote this "misclosure" by =-n:

AX + BT = 1 = =n . (6-15)
On rearrangement this becomes

1 =AX + BT +n (6-16)

here n may be interpreted as the effect of measuring errors;
we call n the "noise". It should be repeated that this equa-
tion is nothing but the system (3-8), obtained by l1inearizing
the nonlinear functional equations (3-1).




i
|
‘.
32
Then, in (6-4),
|16z = ul| = [[=n]] = [[n]] , (6-17)
which is the norm of the q -vector n. Any regular quadratic )
norm in q -dimensional vector Sspace can be written *
2 L ,
lInfl = n Qn (6-13)
with a positive definite regular symmetrix q x q “"weight matrix" *
Q . Let us denote its inverse by D, then (6-18) becomes {
o N o< ) 1
[ n]|¢ =nD"n . (6-19)

If n are random quantities in a statistical sense, then
D may be considered as the covariance matrix of the measuring
errors n. This statistical interpretation of n 1is not neces-
sary--we may consider the norm (6-18) as a metric in a purely
geoimetric sense--but it gives a clue as to the proper choice of
the metric for the vector X. If the variance of a random quan-
tity is small, then this quantity can vary only within narrow 1i-
mits. The larger the variance, the larger variations are possible;
and if the variance goes to infinity, the variation of our quan-
tity becomes completely free.

Since we allow our parameter X to vary freely and inde-
pendently, each component should have an infinite variance, or
zero weight. Therefore, in an expression such as (6-18), with X
instead of n, there should be Q = 0, which gives

[l x|l =0 . (6-20)

This will be our choice for the norm of X.

Finally, the norm for T will be selected a norm in a
Hilbert space with kernel function K(P,Q), that is, defined by
(5-18) and (5-19):
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T2 = (1,7) . (6-21)
Then, assuming X and T independent of each other:

(IR TR TR TR (TR TR A (6-22)

Therefore, the Tichonov condition (6-4) becomes

a(lT(]z + Bflnllz = minimum (6-23)
or

o(T,T) + enT0"*n = minimum . (6-24)

Pure collocation. As a preparation, let us assume error-
less observations. Then n = 0 and (6-24) reduces to

(T,T) = minimum (6-25)

(we have put o = 1 without Toss of generality). We furthermore
assume X = 0 (no systematic effects). Then (6-16) gives

BT = 1 (6-26)

where 1 1is given. The desired T is that function T, satis-
fying (6-26), which minimizes (6-25).

We solve the problem by means of a Lagrange multiplyer.
Instead of minimizing (6-25) under the side condition (6-26), we
form the unconditional minimum of the function

o = %(T,T) L (6-27)

where the q -vector k serves as a Lagrange multiplyer.
A necessary condition for a minimum is the vanishing of
the differential of ¢:

s iy 0y 'd -
- ,-.\‘. M e i Fors
i M ¥ Fleline v Sxeh A Skl deg, 2 ois s o
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do = (T,dT) - kTBdT = 0 . (6-28)

(We can form this differential as if T were a vector.
To avoid misunderstanding, we point out, however, that dT s
not an ordinary differential of T, but what is called, in the
calculus of variations, a first variation, that is, a change in
the function T. In fact, (6-24) is a variational principle, and
(6-28) is the corresponding Euler equation for our special case.
Eq. (6-28) may be found by replacing, in (6-27), T by T + 1,
where ¢ 1is a small parameter:

F(T + et,T + ex) - KF(BT + eBr - 1) =

©
n

F(T,T) = KT(BT = 1) + e(T,1) + ge(x,T) -

- ekTBr + %- 52(1:. 1)

By symmetry, (t,T) = (T,t). We subtract (6-27) and divide by .
On letting e » 0, we thus get

¢ -
lim—&=2 = (T,) - k"Br = 0, (6-29)

E-»>0
which is (6-28), with dT = et.)

The function dT in (6-28) is completely arbitrary; it
need not even be small since a numerical factor does not matter.
(0Of course, dT must belong to the Hilbert space under consider-
ation.)

By the reproducing property (5-19),

dT(Q) = (dT(P),K(P,Q)) (6-30)

or, briefly,

dT = (dT,K) = (K,dT) . (6-31)

e et A o
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Hence,
BAT = (BK,dT) |, (6-32)
and (6-28) becomes
(T,dT) - (kTBK,dT) = 0
or
(T - kTBK,dT) = 0 . (6-33)

Since dT 1is arbitrary, there must be
T - kTBK = 0
or

Fim RUBK o ' (6-34)

This is an important result. What does it mean? In view
of (6-8) and (6-30), this is nothing else than

Q) = § KUEK(P,0) | (6-35)
j=1 :

Li means the operator Lr applied to the variable P. Now, (6-
35) is identical to (5-12), with P and Q interchanged and

b = kj. Thus, the best approximation for T(Q) is, in fact, a
linear combination of the base functions (5-9)!

The rest is straightforward. Considering T a scalar, we
may transpose (6-34):

T o (R (6-36)
and substitute into (6-26):

B(BK)Tk = 1 . (6-37)

ol S ¥ Sl e 1 e
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The q x q matrix
c = B(BK)T (6-38)
has, by (6-8), the elements

« LTS ' by
Cy = LILIK(P,0Q) . (6-39)

Now (6-37) may be solved for k:

ko "N ., (6-40)
so that (6-36) becomes

T = (BK)Tc™!1 . - (6-41)

In view of (5-14), this is identical to (5-13).

We thus have obtained (5-13) as a consequence of the mini-
mum norm principle (6-25). There are shorter and more complete
proofs (the condition (6-28) is necessary but not sufficient);
the advantage of the present derivation is the treatment as a
straightforward solution of a variational principle by standard
techniques (Euler equation). Furthermore, it will essentially
simplify .ne treatment of the general case.

The case o =g =1 ., As a second step, let us consider
the general equétion (6-16), but put, in the Tichonov condition
(6-24), o« =8 = 1, so that

(T,T) + n™0"'n = minimum , : (6-42)

to be solved under the side condition (6-16). We thus have to
form the unconditional minimum of the function

s -

§ - %(T.T) + %n*o‘ln - KT(AX + BT +n -1) . (6-43)

P

e a—— —
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The differential is
do = (T,dT) + nT0"Ydn - kT(AdX + BdT + dn) , (6-44)

where dX and dn are ordinary vector differentials. On re-
arranging we get, using (6-32),

do = (T - kTBK,dT) + (n™D"! - kT)dn - kTAdX = 0 . (6-45)

Since dT, dn, and dX are arbitrary, d¢ = 0 can only hold if

T-k™K=0 , (6-46)
"5l ) SR A L SR (6-47)
kTA = 0 . (6-48)

The first equation gives
T = kTBK , . , (6-49)
identical to (6-34) or (6-35). Again, the solution is a linear

combination of base functions (5-9)!
The transposition of (6-49) gives

T = (BKY'k , ' AR (6-50)
so that

BT = B(BK)Tk = Ck ; (6-51)
using the abbreviation (6-38). Eq.(6-47) gives

nT = kTD or n = Dk . (6-52)

Eq.(6-16) may be written

w &

o &
R T T R S

el o
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1 - AX =BT +n , (6-53)
and substituting (6-51) and (6-52) we get

1 - AX = (C +# D)k , (6-54)
so that

k= {C + D) 31 -~ a%). (6-55)

We substitute this into (6-48), transposed as

obtaining
ARt s) T -A"fE sy " e
so that
T T e, -1 \
X = [AT(C + D)"'A]  AT(c + D)™, (6-56)

which determines fhe parameter vector X. The substitution of
(6-55) into (6-50) then gives the potential:

T = (BK)T(C + D)"1(1 - AX) . (6-57)

The genera]Icase. Take finally the general Tichonov condi-
tion (6-24)

a(T,T) + en™D"'n = minimum (6-58)

for solving the equation (6-16)

AX + BT 4+ n =1, (6-59)

S,
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The condition (6-58) is, for o # 0, equivalent to
(T,T) + nT(%D)'ln = minimum , (6-60)

so that we only have to replace, in (6-56) and (6-57), D by
aD/B8. This gives

[AT(sC + aD)~'A] TAT(gC + D)~ , (6-61)
(8BK)T(gC + D)~ (1 - AX) , (6-62)

>
]

-—
]

which is the solution of (6-59) under the genéraT Tichonov con-
dition (6-58).

Obviously, to various ratios a : g there corresponds a
different weighting between the square of the "function norm",
(T,T), and of the "error norm", n™0"'n. Pure collocation, with
the condition (6-25) and n = 0, fits the solution exactly to
the data. This is unsuited for real data in the presence of mea-
suring errors, because then the solution is distorted by faith-
fully reproducing all measuring errors; we risk to get spurious
oscillations (Eeg and Krarup, 1975, p.111)."

Therefore, some balance between a"and B in (6-58) must
be found. But how? We might use some triai-aﬁd—error procedure,
but this does not seem very satisfactory. A theoretically moti-
vated, in a certain sense optimal, solution to this problem is
found by statistical considerations, as we shall see in the fol-
lowing section,

In their "Integral Geodesy", Krarup and Eeg (1975) give
equations equivalent to (6-61) and (6-62), but with different |
weighting in the two equations: in (6-61) they use g =1 - a
(ibid., p.119, their eq.(5)) and in (6-62) they use 8 = a =1
(ibid., p.112, their eq.(14)). This follows from employing two
different minimum principles. It seems, however, preferable to !
derive both equations from the same variational principle (6-58). ;

We also mention that the result for the "errorless" con- ;
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dition (6-25) cannot be obtained by simply putting o =1, g = 0,
as might be expected at first sight. The essential feature with
(6-25) is that n =0 and D = 0. We, therefore, have to put
D=0 in (6-61) and (6-62). As a consequence, g cancels then,
and we obtain

X = (ATe™ AV A%y, (6-63)
= (BK)Tc™ (1 - AK) . (6-64)

—
1]

For A 0 (no systematic parameters), the last equation reduces
to (6-41), as it should.

A final word on the solution of these variational princi-
ples by an Euler equation. Any Euler equation gives only a neces-
sary, not a sufficient, condition for a minimum. It is not too
difficult to show that our solutions do indeed give a minimum.

The proof goes along well-known lines (cf. Moritz, 1972, pp.22-23).

7. Least-Squares Collocation

One of the possible approaches to improperly posed problems
mentioned at the end of sec.4 are stochastic methods. We have al-
ready been close to such an approach in the preceding section,
when we interpreted the matrix D 1n (6-19) as the covariance
matrix of the measuring errors; however, this was not essential
since, from an analytical point of view, we could as well have
used any other positive-definite regular square matrix,.
A more thoroughgoing stochastic approach consists in the
attempt to interpret the norm || T|| statistically, as well as
the error norm || n|| . This can be achieved by formally consider- i
ing the anomalous gravity potential T as a stochastic process. ‘

This could be a purely formal "stochastic extension", motivated
by the irregularity of the anomalous gravity field.
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Historically, this was the way that led to collocation in
its geodetic application. The statistical treatment of the gra-
vity anomalies was initiated by DeGraff-Hunter in 1935, but did
not find much response. The contemporary rapid development start-
ed from Hirvonen's work, published in 1956: the explicit treat-
ment of the anomalous gravity field as a stochastic process in
1959 by Kaula, the geodetic application of least-squares predic-
tion techniques of stochastic processes by Moritz in 1962, genera-
lized by Kaula in 1963, and the extension to the estimation of T
from given functionals, which is collocation in the proper sense,
by Krarup in 1968-9.

Stochastic process techniques form a very convenient tool
and an intuitive terminology (variances, covariance functions,
etc.), and they permit the estimation of accuracies, which is of
particular importance for geodetic applications.

There is no fundamental objection against embedding the
actual Earth, with its potential T, in an ensemble of "sample
earths", making possible the application of stochastic-process
techniques. Similar approaches are frequently applied (conscious-
ly or unconsciously) in various other fields.

From the point of view of logical simplicity, however, it
appears preferable to find an interpretation, which retains the
convenient formal apparatus of stochastic processes, but is re-
stricted to our Earth only, without introducing fictitious other
"earths".

This is made possible by an application of Norbert Wiener's
"covariance analysis of individual functions", in our case, of
the actual anomalous gravity potential T (Moritz, 1972,sec.8).

In this case, the covariance function of T is defined as

C(P,Q) = M (T T}, (7-1)

as a homogeneous and isotropic average M of the product TPT
where

1 g°
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YA /™ [*"(-)sinededrda (7-2)

Ml{‘} =
"™ \=0 6=0 a=0

is an average over all points (e,x) and all azimuths o (ibid.,
p.114), which can be considered as an average over rotation group
space,

If we consider rotation group space as a probability space
and on this space a stochastic process, the sample functions of
which differ only by rotations, then the probability average co-
incides, by definition, with the "space average" (7-1), so that
our process will be (trivially) ergodic (Moritz, 1972, p.119).
This is elaborated in detail in (Moritz, 1978a), where ergodic
processes on the sphere are discussed, They are of necessity non-
Gaussian, since Lauritzen has shown in 1971 that ergodic Gaussian
processes on the sphere are impossible.

The statistical expectation in the probability space of
the measuring errors n are denoted by M2.

Thus the measuring errors may be considered as "physically
stochastic" quantities. The anomalous potential T 1is only for-
mally a space average. If we understand statistics as the study
of a large amount of data and their average properties (for in-
stance, an analysis of the global human population), then we may
say that our treatment of T 1is statistical, though T itself
is not a stochastic quantity in a strictly physical sense (Mo-
ritz and Sansé, 1978).

Least-squares collocation is defined as that collocation
method which minimizes the variance of the estimated quantities,
in our case, of the potential T and the parameter vector X.
Let T* be the true potential and T its estimate from the gi-
ven data, affected by measuring errors, at a particular point P.
Then the variance of the estimate T , or the square of the pre-
diction error L is defined as G

2 % 2 :
" s MMLUT - TN, (7-3)

. A /:
£
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that is, as the average of the square of the true prediction er-
ror TZ - TP at some point P, extended over all measuring er-
rors (Mz) and all points of the sphere (Ml).

This definition is very natural; it corresponds to a glo-
bal average.

Similarly the variance mf of the estimate for a compo-

nent Xi of the parameter vector X is defined. The conditions

minimum , (7-4)

minimum (7-5)

oY

for all points P of the sphere and all components of X, define
least-squares collocation.

Special cases are least-squares prediction of gravity,
which uses only (7-4)--cf. (Heiskanen and Moritz, 1967,p.268)--
and, of course, least-squares adjustment, which uses only (7-5).

The result of conditions (7-4) and (7-5) are as follows:
we get collocation in a Hilbert space, in which the kernel func-
tion is given by the covariance function (7-1), and T and X

are then expressed by (6-56) and {(6-57). Putting

C+D=g. . »¢ , (7-6)
BK = C ’ (7-7)

we get the well-known formulas of least-squares collocation

R G ) W i (7-8)
s=¢ T - AX) (7-9)

Here we have replaced T by s, because the anomalous potential,

or any other quantity of the anomalous gravitational field, is

also called a "signal", denoted by s. A pleasant consequence of
least-squares methods with respect to linear transformation is
that an equation of form (7-9) holds for the direct estimation

g
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of any anomalous field quantity, all these quantities (signals)
being linear functions of T. In fact, eq.(2-36) of (Moritz,
1972), has been derived for the estimation of any signal,

Thus, least-squares collocation corresponds to a Tichonov
condition (6-58) for which the kernel function defining the norm
/(T,T) is the covariance function, and for which o = g = 1.
Thus, the relative weights of the two summands (6-58) are unique-
ly determined in such a way as to obtain an optimal (minimum va-
riance) result,

The observation equation to be satisfied is (6-16):

1 = AX + BT + n . (7-10)
Putting
BY s 'g* e (7-11)

which is the influence of the anomalous field on 1, that is, the
"signal part" of 1, we have "

1 =AX +#s' +n , : (7-12)
which is the fundamental equation of least-squares collocation;
cf. eq.(2-1) of (Moritz, 1972, p.7), with 1 denoted by x.

The simplest way to derive (7-8) and (7+<9) is to use a

finite minimum norm principle:

sTC™'s + nTD"'n = minimum , (7-13)

where the vector s comprises the components of s' in (7-12)
plus the signals to be estimated in the given problem (and only
these); C 1is the covariance matrix of this vector s; cf. (Mo-
ritz, 1972, p.122); a similar principle is used (ibid., sec.2).
This approach is completely equivalent to (6-42), which
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uses the full Hilbert space norm. Here only finite matrix opera-
tions are required; Hilbert space lTurks invisibly in the back-
ground (to use another metaphor: matrix formulas such as (7-8)
and (7-9) represent the finite-dimensional surface of infinitely-
dimensional Hilbert space).

Thus, least-squares collocation satisfies two conditions:
a minimum norm condition ((6-42) or (7-13)) and 2 minimum vari-
ance condition ((7-4) and (7-5)).

The minimum norm condition (especially in the form (7-13))
is mathematically convenient to handle, but physically it appears
somewhat unnatural: it combines additively two different quanti-
ties (norms), which have a completely different physical charac-
ter: the first depends on the anomalous gravitational field, the
second on random measuring errors. -t

Much more natural seems the minimum variance condition:
the average in (7-3) (and similarly in (7-5))'is over both signal
and noise, but affecting the same quantity (T§A- TP)Z: this is
felt to be exactly as it should be.

“An interesting variant of the minimum variance approach
is to start from a principle such as (7-4) and to postulate a
linear estimation that is symmetric with respect to .the rotation
group. In this way it is possible to deduce (7-1), rather than
introducing it by definition (Sansd, 1978).

Error Covariances. Probably the most important feature of
the statistical approach is the possibility to estimate, not only
the values of anomalous field quantities and of systzinatic para-
meters, but also their accuracy.

The error variances of the parameter vector X and the
signal s and their covariances are expressed by the error co-
variance matrices Exx’ Ess and Exs’ the last being the cross-
covariance matrix of X and s. The vector s comprises any
number of signals (anomalous field quantities) estimated by the
least-squares collocation procedure under consideration.

We have (Moritz, 1972, pp.30-33)

v oo
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o Te-1,,~1 S
Exx (A*C*R)" ", (7-14)
-1 b b 1ES
. Css - Csxf cxs + HAExxA H" , (7-15)
- TT -
s ¥ ELEW (7-16)
where
= = 51
H = Csxt ; (7-17)
The matrix Css- is the signal covariance matrix of the s that
was to be estimated; Ess is its error covariance matrix.
These formulas express the accuracy of the statistically
optimal estimates (7-8) and (7-9). The statistical treatment of ’
the gravity field, however, makes it even possible to estimate
the accuracy of other linear estimation formulas such as (6-61) 1
and (6-62). We write these equations in the form
X =61 , (7-18)
s = H(1 - AX) = H(1 - AG1)
= H(I - AG)1 4
= L1 , (7-19) 4

I denoting the unit matrix and the vector s comprising those

values of T that were estimated. ' 3
The least-squares estimates (7-8) and (7-9) may be written |

in an analogous form:

X =81, (7-20)
s = L1, (7-21)

Then equations (3-52a,b) of (Moritz, 1972) give:

1

= E, + (6-6)T@E-aT, (7-22)
=E ¢+ (L-LT(L-01)T. (7-23)
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Here Exx and Ess are the error covariance matrices of
the estimates (6-61) and (6-62), and Exx and Ess are given
by (7-14) and (7-15). It should be noted that, in the least-
squares estimates (7-8) and (7-9), the matrices C and Csx
are derived from the covariance function, whereas the correspond-
ing matrices C and BK in (6-61) and (6-62) are to be derived
from the kernel function used.

Geometrical interpretation of minimum variance, The con-

dition of minimum variance has an interesting geometrical inter-
pretation by means of the dual space, which is the space of all |
bounded linear functionals of the elements of the given linear
space (Tscherning, 1978,p.175).
Let, for simplicity, be A =0 and D =0 , that is, con-
sider the case of pure collocation without random errors and sy-
stematic effects. Then (6-6) reduces to

¥ wLER : (7-24)

and the least-squares estimate (7-9) becomes

W e i (7-25)

SX
Here

s = FT (7-26)

is a linear functional, to be estimated, of the anomalous poten-
tial T ; as a matter of fact, (7-25) could also have been ob-
tained by applying the linear functional F on both sides of

eq.(5-13),

The estimate (7-25), besides satisfying the requirement of
minimum norm || T|| , also satisfies the condition

[{F*=F|l' = minimum, (7-27)

e
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where ||*||' denotes the norm in the dual space and F¥ stands
for the "true" value of the functional, of which F is the esti~
mate. The minimum (7-27) is taken with respect to all possible
estimates of F as linear combinations of the q given func-
tionals Li .

In geometrical terms, the "best" estimate (7-25) is simp!ly
the orthogonal projection, of the functional to be estimated, on-
to the subspace of the dual space spanned by the q given func-
tionals Li .

For the case of pure collocation, this is shown in (Krarup,
1978, p.200). (The geometrical interpretation is perhaps best
understood in the simple finite-dimensional case of ordinary least-
squares adjustment, where linear functionals reduce to vectors
(Moritz, 1966).)

This geometrical situation is valid for arbitrary kernel
functions, A physical interpretation, however, seems to be possible
only if we identify the kernel function with the covariance func-
tion; then [[F*- F[[' 1is simply the standard error m, of esti-
mating the functional F . In fact,

(F -« F)T = F*T - FT = s"- s = e (7-28)
is the "true error", the difference between true value s™ and
predicted value s , and

[| F¥= F||'? = M{e2} = m? (7-29)

F F

is the average of eg , that is, the square of the standard pre-
diction error my . :

Remark on Terminology. The minimum variance conditions
(7-4) and (7-5) correspond to similar conditions in least-squares
adjustment and least-squares prediction. Therefore, the name,
least-squares collocation, seems to be appropriate for the case

in which the solution is given by (7-8) and (7-9).
In contrast to this name, collocation using an arbitrary

e
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kernel function, which is the case with the methods described in
sections 5 and 6, might be called collocation with kernel func-
tions. Pure collocation (sec.5) would then be kernel function
collocation without noise (and without systematic parameters),
and the case of "integrated geodesy"--formulas such as (6-61)

and (6-62)--would then be kernel function collocation with noise,
including the estimation of systematic parameters.

It is evident that also the results of collocation with a
general kernel function satisfy a minimum principle of form (6-24)
and, dually, (7-27), which might also be called (geometrical)
least-squares principles; therefore Krarup (1978, p.197) uses the

term "least-squares collocation" also in the case of a general
kernel function,

The terminology suggested here has the advantage of distin-
guishing between "statistical" and "geometrical" collocation,.

We finally mention that a comprehensive review of quadra-
tic norm and minimum variance estimation principles is given in
(Grafarend, 1978), Grafarend also considers rank-deficients equa-
tions, occuring when the components of the vector X are not li-
nearly independent, b
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8. Review; Alternatives

In this report we have asked ourselves in which way arbi-
trary geodetic ohservations of the earth's gravitational field
can be used to obtain information about this field and to dete:-
mine this field to the best possible extent. We have seen that.
using contemporary mathematical techniques, a straight road leads
from the nonlinear observational equations to collocation with
kernel functions and least-squares collocation. The main stages
on the way were linearization (sec.3) to obtain a linear impro-
perly posed problem (sec.4), to which three different standard
methods of solution are applied: a restriction of the solution
space, leading to "pure collocation" (sec.5), variational prin-
ciples of Tichonov type, by which measuring'errors can be taken
into account, leading to a generalized collocation with kernel
functions, and a statistical approach, leading to least-squares
collocation, .

We shall now discuss these various stages and possible al-
ternatives.

Linearization. A1l geodetic observations are nonlinear
functionals of the potential V and of certain parameters X.
Each observation gives a functional equation, and q observa-
tions give a set of q of such observations. The determination
of V and X from this system of equations is a nonlinear im-
properly posed problem. By a Taylor linearization we get a system
of q 1linear functional equations for the anomalous potential
T and for corrections, again denoted by X, to the parameter |
vector., For this linear improperly posed problem, standard mathe- ’
matical techniques exist. If the accuracy of linearization is
not sufficient, we may iterate. A direct attack of the nonlinear
problem does not seem possible with present mathematical tools:
there is at present no alternative to linearization.

Why collocation? Collocation in a mathematical sense is
the approximation of a function by fitting an analytical expres-
sion to q given linear functionals; for a very simple example

-
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see (Moritz and Siinkel, 1978, p.32).

Such collocation methods are used in applied mathematics
for the approximate solution of differential equations, etc.
(which are also functional equations!). Here the functionals are
usually supposed to be given in a mathematically exact way, and
the analytical expression is required to fit these data exactly.

Such a "pure" or "mathematical" collocatiorn is, in general,
not adequately applicable to our present geodetic problem, in
view of the inevitable random measuring errors (noise). An excep-
tion is, for instance, least-squares interpolation of gravity
anomalies (interpolation is a special case of collocation, in
which the functionals are simply the values of the function at
discrete points); here, the measuring errors of gravity are con-
sidered to be negligibly small. Generally, measuring errors, or
"noise", must be suitably taken into account: we have a problem
of "collocation with noise". (This is true for the linearized
problem, but may be said to hold even for the origina] nonlinear
problem because measurements, by their very nature, are nonlin-
ear functionals of V and X, and the notion of collocation may
be extended, in a natural way, also to the fitting of nonlinear
functionals. But, as we have said, we shall anyway restrict our-
selves here to linearized problems.)

Thus the operational approach to physical geodesy, start-
ing from the measurements, inevitably lead to a collocation prob-
lem (with noise); there is, in this sense, no alternative to col-
location. What can be chosen in different ways, is the analytical
expression for approximating the potential.

Linear or nonlinear approximation. Instead of a linear

combination (5-2) of base functions one could, in principle, also
envisage other forms of approximation. For reasons of mathema-
tical simplicity, and also in view of the smaliness of the quan-
tities under consideration (anomalous field quantities and cor-
rections to the parametérs). linear approximations are used prac-
tically without exception. (An exception would be nonlinear pre-
diction to be mentioned later which is, however, hardly used in
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geodetic practice) From the point of view of theoretical simpli-
city and practical usefulness, the restriction to linear approxi
mation methods seems to be fully justified.

Alternative base functions. Besides kernel functions, many
other functions are being used as base functions in expressicns
such as (5-2). We only mention polynomials in polynomial interpo-
lation, trigonometric functions in trigonometric interpolation
and approximation and, in geodetic applications, multiquadric
functions (Hardy, 1976). Particularly useful are spline functions
and other finite elements; for an elementary discussion and com-
parison with kernel functions cf. (Moritz, 1978b). An interesting
geodetic application of spline functions is to a fast computation
of covariance functions (Siinkel, 1978).

These functions can be very well suited for particular
applications, but they cannot be used to solve the general opera-
tional problem of physical geodesy because they are not harmonic
outside the earth, which is required for approximating the poten-
tial T,

Spherical harmonic functions can be used to represent the
potential, and they are, in fact, fundamenté] for this purpose.
From a practical point of view, they are pdrticu]ar]y suited for
representing the global field at satellite altitudes. The sample
functions of Giacaglia and Lundquist (1972) are finite linear
combinations of spherical harmonics in a form convenient for cer-
tain purposes. For local representations of the detailed gravity
field, however, spherical harmonics are not applicable. This ex-
cludes their use as base functions in the present general context.

Kernel functions can equally well be used for local and
global purposes; this explains their application in our general
operation approach.

It should be mentioned also that any choice of base func-
tions leads to a q x q system of linear equations for the co-
efficients; for kernel functions, this system will have a symme-
tric matrix,

e
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Alternative norms. Let us now turn to the Tichonov prin-
ciple (6-4). Why should we use a quadratic norm, of form (6-19)
and (6-21), respectively? The reason is simple: only then will

we get a linear variational (Euler) equation, leading to a linear
combination of base functions.

This motivates the use of a quadratic norm, which is the
inner product of T with itself:

WEIE - waprirr (8-1)

that is, the use of Hilbert space. But why a Hilbert space with
kernel functions, not some other Hilbert space?

The reason is that only then the Euler equation will, in
fact, lead to a linear combination (5-2) of base functions. Let
us illustrate this by means of a counterexample. If we restrict
ourselves to the interpolation of functions f defined on a
sphere o, then a very obvious choice of norm would be

HFl° = (f.8) = [[fdo . (8-2)
g

The Hilbert space so defined does not have a kernel function in
the proper <ense; however, it may be considered as a Hilbert
space with a "generalized" kernel function, which is a Dirac del-
ta function defined by

§(P,Q) = s(Q,P) ,
§(P.Q) =0 1f Py q, (8-3)

/] §(P,Q)do, = 1 for fixed Q .
aqg

Then

(F(P).K(P,Q)) = (F(P),8(P,Q)) = [ [f(P)s(P,Q)do, -
= F(Q) [ [6(P0)do, = £(Q) ,
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in agreement with the definition (5-19).
For our interpolation on the sphere we thus have, by (5-15),

¢j(P) = 6(P.Pj) g (8-4;

These "functions" are zero outside the interpolation points. The
interpolation function, the linear combination (5-2), has, there-
fore, the property that it is zero everywhere outside the points
at which the functional values are given; there is no smooth in-
terpolation.

This simple example will illustrate that only quadratic
norms with kernel functions can be used.

It is not difficult to see that a kernel function norm
is a natural extension, to Hilbert space, of the usual quadratic
norm

%5 (8-5)

with a positive definite regular matrix K, of vectors x in a
finite-dimensional space.

Thus, the Tichonov approach with a quadratic norm inevi-
tably leads to collocation with kernel functions; other base func-
tionscannot be obtained in this way.

In order to further illustrate this, let us consider an-
other example. Assume a function y = f(x) to be defined on the
unit circle (0 = x = 2r¢), such that

f(2n) = £(0) . (8-6) |

Let us further assume that the function has a square-integrable
second derivative f"(x) and define the norm of f by

Il £112 = f;" | £ (x)|? dx (8-7)

(it is actually a semi-norm, but this is irrelevant here).
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Expanding the function f(x) into a trigonometric series
we have

f(x) = % 3, + b3 (a_cosnx + b_sinnx) (8-8)
n=1
f'(x) = - ¥ n?(a cosnx + b _sinnx) . (8-9)
n=1 n n

The substitution of the last equation into (8-7) and subsequent
integration leads to

2 =% % L (8-10)

n=1 .

Using as kernel function

K(P,Q) = % In"cos(x - €) (8-11)
1
where
)(p = X XQ =& ’
we have
L
2m 42 2y
(F(P)s K(P,Q)) = [ &L 23 ax , (8-12)
dx® ax

which is readily seen to be equal to f(¢) , provided

a, = 2 [Meax =0 . (8-13)
(o)

Thus, for functions satisfying (8-13), (8-11) is the reproducing
kernel. Interpolation and collocation With such a kernel function
correspond to minimizing the norm (8-7).

The minimum of a norm such as (8-7), the integral being ex-
tended over an interval [a,b] , is used to define cubic spline
functions (there are nonperiodic and periodic splines); cf. (Mo-
ritz and Siinkel, 1978, pp.26 and 44).
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The physical interpretation of minimum norm (8-7) is mini-
mizing the total curvature. Similarly, we could, in geodesy, use
the condition that the total mean curvature of the geoid (the in-
tegral, over the sphere, of the square of mean’curvature) is mi-
nimized, in order to define a kernel function.

Least-squares collocation versus collocation with a gene-

ral kernel function. In least-squares collocation, the kernel

function is chosen to be the covariance function; see the end of
sec.7. The basic advantage of this choice is the statistical sig-
nificance: it gives the best linear estimate (minimum variance

of the result).

Since the anomalous potential is not normally distributed
(sec.7), the "best linear" estimate is not necessarily the abso-
lutely "best" estimate: nonlinear estimates may still reduce the
variance of the result. Therefore, nonlinear prediction has been
considered (Kaula, 1966; Grafarend, 1972). For most practical
purposes, however, linear estimates seem to be fully adequate.

Of decisive importance is the possibility, in least-squares
collocation, to estimate the accuracy of the results. This can be
done solely on the basis of the covariances, without needing ac-
tual measurements. Therefore, least-squares collocation can be
used for investigating possible configurations of measurements,
for the planning of surveys, and even for the investigation of
accuracies to be expected with the use of measuring techniques
which are being developed or only being envisaged for the future.

An interesting feature has been pointed out by Tscherning
(1977): if we take the covariance function as kernel function,
then the anomalous potential T has an infinite norm, so that T
itself does not belong to the Hilbert space under consideration.
In physical terms, taking for example interpolation, this means
that the interpolating linear combinations of kernel functions
are all much smoother than T itself. In practice, this is an
advantage rather than a deficiency; it is, however, a slight

A
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theoretical drawback because it makes it difficult to prove con-
vergence of the approximating to the "true" function if the den-
sity of the data approaches a continuous distribution (Tscher-
ning, 1977). This drawback can easily be remedied by changing the
higher-order spherical-harmonic terms of the covariance function
(which can anyway not be exactly determined because of lack of
data) by an arbitrarily small amount which does not noticeably
change this function.

The exact covariance function could, of course, only be
determined if we knew T exactly (and then we should not need
collocation!), So all we can do is to fit an appropriate analy-
tical expression to empirical data (gravity variances and covari-
ances, degree variances from a spherical-harmonic development,
etc.).

So, in the practice of least-squares collocation, we use
an analytical kernel function which approximates the covariance
function without coinciding with it, It should, however, be close
enough so that accuracy estimates are meaningful.

Even the use of a general harmonic kernel function precise-
ly preserves the mathematical structure of the gravity field, ex-
pressed by relations between the potential, gravity anomalies, de-
flections of the vertical, etc..

The approach followed in practice by most workers in this
field, whether they explicitly favor a statistical interpretation
or not, is to use a kernel function which has a simple analytical
expression and exhibits the main features of an empirical covari-
ance function. :

Relation to least-squares adjustment. Least-squares collo-

cation differs from least-squares adjustment in two respects.
First, from a physical point of view, adjustment contains
only one kind of statistical quantity, namely the random measur-
ing errors (noise); in least-squares collocation there are two
physically different quantities that are treated statisgically:
quantities of the anomalous gravity field (the signal) and measur-
ing noise.
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Second, from a formal-mathematical point of view, the im-
portant distinction is that the signal, in contrast to the noise,
is a continuous function; therefore, an adequate treatment requir-
es some in%initely-dimensiona] function space, especially Hilbert
space. Operations in Hilbert space show formal similarities with
operations in finite-dimensional space but are qualitatively dif-
ferent, just as differential equations are gualitatively different
from difference equations although there are formal similarities.

It is true that the gravity field at satellite elevations
can be adequately described by a spherical-harmonic expansion trui -
cated at a sufficiently high degree; the coefficients of such a de-
velopment do form a finite-dimensional vector. Thus, if we exclu-
sively work at satellite altitudes, we might, in fact, replace Hil-

"bert space by a finite-dimensional space, without essentially im-
pairing the accuracy. |

This situation changes essentially if we consider the gra-
vity field at the earth's surface by including terrestrial obser-
vations or, e.g., satellite altimetry. The detailed gravity field
at the earth's surface cannot be adequately described by a spher-
ical-harmonic expansion, neither from a theoretical point of view
--because the convergence cannot be guaranteédF-nOr from a practi-
cal point of view--because, if at all possible, such an expansion
would require an excessively high number of terms, which is be-
yond the capacity of any present digital computer. :

Hence, the general replacement of Hilbert space by a finite-

dimensional space is neither theoretically nor practically feasible.

It is also not necessary since.'as we have seen, the practi-
cal collocation formulas are finite-dimensional matrix formulas.
The approach of (Moritz, 1972) works entirely with finite matrices;
the Hilbert space character expresses itself only in the fact that
covariances are propagated, not by matrix operations, but by linear
operations (such as differentiation) of covariance functions. See
also (Moritz, 1976, sec.4).

A feature of collocation that is theoretically most inter-
esting is that, from a formal-geometrical point of view, least-
squares collocation can be considered as a problem of least-squares
adjustment in Hilbert space (Krarup, 1969, pp.34-41).
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We also mention that the usual least-squares solution of 1
overdetermined systems of linear equations can be considered as
a "quasi-solution" according to the theory of improperly posed
problems (Tikhonov and Arsenin, 1977, Chapter I).

Discrete versus continuous data. In general, geodetic data 1

are discrete measurements of a finite number; the present report
is based on this situation. There are exceptions, for instance,
continuous recordings of data profiles; they are usually convert-
ed into discrete data by a representative selection.

A practically more important case is, for instance, a very
dense gravity survey around a station at which precise deflections
of the vertical are to be computed. In such cases, a combination
of collocation with other methods, such as integral formulas (Mo- {
ritz, 1975), might be appropriate.
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